[CONTRIBUTION FROM THE INORGANIC AND PHYSICAL CHEMISTRY LABORATORIES, THE M.R. SCIENCE INSTITUTE, GUJARAT COLLEGE

The Thermal Decomposition of Silver Hyponitrite

By TRAMBAKLAL MOHANLAL OZA AND RAJNIKANT HARIPRASAD THAKER

RECEIVED FEBRUARY 14, 1955

Of the solid products, only silver oxide is produced in the primary change $Ag_2N_2O_2 = Ag_2O + N_2O$, which is immediately followed by reaction or reactions in which silver nitrite is produced. Silver, silver nitrite and silver nitrate are all products of secondary changes. The complex nature of the decomposition is due to the reactions which follow the formation of silver nitrite. No such reaction as $Ag_2N_2O_2 = 2Ag + 2NO$ seems to occur. Silver nitrate is not directly formed from silver lupponitrite. Apparently silver hyponitrite is not oxidized by nitrogen dioxide at or below 150°

Experimental

The thermal decomposition of silver hyponitrite has been studied by a number of investigators.¹⁻⁶ Divers and Haga¹ reported that the decomposition is similar to that of nitrite as they found nitric oxide, silver and silver nitrate. Divers⁵ later detected nitrogen dioxide, nitrogen and traces of nitrite. Thum³ found nitrous oxide but no nitrite. Divers obtained silver nitrate as required by

$$3(AgNO)_2 = 4Ag + 2AgNO_3 + 2N_2$$
 (1)

and assumed the primary change to be

$$2(AgNO)_2 = 4Ag + N_2 + 2NO_2$$
 (1a)

which was followed by

$$(AgNO)_2 + 4NO_2 = 2AgNO_3 + 4NO$$
 (1b)

Kirschner⁴ supposed that nitrous anhydride was formed in the primary stage. Ray and Ganguli⁶ suggested, on the other hand, that the primary changes are

$$2(AgNO)_{2} = 2N_{2}O + (2Ag_{2}O = 4Ag + O_{2}) (2a)$$

(AgNO)_{2} = 2Ag + 2NO (2b)

 $\Im(AgNO)_2 = AgNO_3 + 2N_2 + (2Ag_2O = 4Ag + O_2)$ (2c)

thus, according to them nitrate is formed from silver hyponitrite. Both Ray and Divers ascribed nitrogen production to the primary change, but Divers' equations differ for low (1a) and for high (1) temperatures. Ray and Ganguli's results do not conform to the requirements of (1) supposed by Divers to explain quantitatively the reaction at higher temperatures. Ray and Ganguli assumed the formation of silver oxide but found none in the residue.

We have studied the decomposition, in vacuo, of silver hyponitrite and mixtures of the hyponitrite with silver oxide and silver nitrite. Silver oxide was isolated; temperature was found to have little influence on the nature of the products; and nitrogen, nitrous oxide, nitric oxide, nitrogen dioxide, silver, silver oxide, silver nitrite and silver nitrate were *all* produced in the decomposition as long as hyponitrite was present. The primary change is $Ag_2N_2O_2 = Ag_2O+N_2O$; the secondary changes arise from silver oxide and the formation of silver nitrite in the system. The secondary changes mask the primary change altogether.

(1) E. Divers and T. Haga, J. Chem. Soc., 45, 78 (1884).

- (2) Vanderplaats, Ber., 10, 1507 (1887).
- (3) A. Thum, "Biatrige Zur Kentnis der untersalpetrigensaure," Prag. 1893; Sietzber Akad. Vien., 102, 284 (1893); Monatsh., 14, 294 (1893).
 - (4) A. Kirschner, Z. anorg. Chem., 16, 424 (1898).
 - (5) E. Divers, J. Chem. Soc., 75, 108 (1899); Ber., 36, 2878 (1903).
 - (6) P. C. Ray and A. C. Ganguli, J. Chem. Soc., 91, 1399 (1907).

Materials .--- Silver hyponitrite was prepared by dissolving analytically pure Na₂N₂O₂·5H₂O in the minimum amount of water and adding 8% silver nitrate dropwise with constant stirring to a darkened beaker; no brown precipitate should be formed. The canary yellow precipitate, which had been be formed. The calary yeaks precipitate, which had been washed with water, was treated with alcohol and ether, and dried in the dark in a desiccator. The salt retained its bright yellow color. Anal. Calcd. for $A_{g_2}N_2O_2$: Ag, 78.26; N, 10.14. Found: Ag, 78.3; N, 10.71. Silver oxide was prepared from silver nitrate and dilute potassium hydroxide, and silver nitrite from silver nitrate and sodium nitrite; both were analytically pure. Analyses. Gas.—Nitrous anhydride and nitrogen diox-

ide were absorbed by alkali which was analyzed for nitrite (or for nitrite and nitrate, if nitric oxide was not present (of for infinite and infrate, in infine oxide was not present in the gas) and calculated according to the equation $N_2O_3 + 2KOH = 2KNO_2 + H_2O$ or $2NO_2 + 2KOH = KNO_3 + KNO_2 + H_2O$. The pumped gas contained nitrous oxide, nitric oxide and nitrogen. Nitrous oxide was absorbed in cold alcohol and the gas stored over the alcohol for two hours after contraction had ceased. Nitric oxide was absorbed in alkali sulfite saturated with nitrous oxide and pitrogen. Besidual gas was taken or pitrogen. absorbed in alkali sulfite saturated with nitrous oxide and nitrogen. Residual gas was taken as nitrogen. All re-corded volumes are at N.T.P. **Residue**.—The residue which contained Ag, Ag₂O, Ag₂N₂O₂, AgNO₂ and AgNO₃ was treated with hot water until the filtrate did not test for ni-trite or for alkalinity. The solubilities of Ag₂O and Ag₂N₂O₂ at 80° were 0.06804 and 0.00024 (g./liter), respectively; filtrate (A) therefore contained Ag₂O, AgNO₂ and AgNO₃ while the insoluble portion (B) contained Ag₂N₂O₂ and Ag. (B) was treated with 0.08–0.1 N nitric acid which dissolved Ag₂N₂O₂ but did not attack Ag: the latter was dissolved in Ag₂N₂O₂ but did not attack Ag; the latter was dissolved in nitric acid (1:1). (A) was analyzed for total Ag, nitrite and nitrate"; if the amount of nitrate was small, 0.01~N potassium nitrate was added as a carrier. The total Ag minus the Ag equivalent of the nitrite and nitrate gave the Ag present as Ag_2O .

Apparatus and Procedure.8-The oil-bath was controlled to $\pm 1^\circ$. For higher temperatures, a cylindrical nichrome furnace was used which was controlled by a rheostat to furnace was used which was controlled by a rheostat to $\pm 5^{\circ}$. To find the decomposition temperature of hyponitrite, 0.2 g. was heated at 100° for 30 minutes, then the temperature was raised 10° in 15 minutes, maintained constant for another 15 minutes and so forth. The salt retained its bright yellow color and decomposed without explosion at 158°.⁹ Divers⁶ reported that the decomposition occurs between 140 and 160°; Thum³ observed dense fumes at 100° and the brisk evolution of cas at 140° and denied the explosive character of the decomposition reported by Van-derplaats.²

The influence of some variables on the decomposition of silver hyponitrite is shown in Table I. Experiments 1-6 show that the volume of free gas (unabsorbed by potassium hydroxide) contracts above 170° , even in the half-hour experiments; this indicates the conversion of nitric oxide to

nitrogen dioxide. Experiments 7-12 show the effect of temperature on hyponitrite heated for one hour: (a) the residue contains no $Ag_2N_2O_2$ or Ag_2O , while the gas contains all the products of the decomposition, N_2 , N_2O , NO and NO₂, in *all* the experiinents; (b) Ag increases and AgNO2 diminishes with rising

- (7) M. S. Shah and T. M. Oza, *ibid.*, 725 (1931).
 (8) T. M. Oza and V. T. Oza, *ibid.*, 907 (1953).

(9) A. E. Menke, ibid., 33, 401 (1878); W. Zorn, Ber., 10, 1306 (1878).

Oct. 5, 1955

THERMAL DECOMPOSITION OF SILVER HYPONITRITE

4977

				5							7				9				
1	2 t A	3	4 Time	Tota1		6	,	. 07	form	Sol	lid produc	ts	Ag2NtO2		Aatios— AgN(Sata	10 products g	
15 X [7	g. ng210202	°C.	hr.	m1.	NO	NO2	N ₂ O	N ₂	A	g Ag ₂	O AgN($D_3 AgN($	D_2 g.	Ag	AgN	D ₃] Aga	Ag ₂ O	AgNO2	AgNO
1	0.2526	160	0.5	5.6	88.75		8.00	3.2											
2	.2512	170	.5	27.6	85.9		9.5	4.5											
З	.2545	180	.5	27.2	81.3		12.9	5.9											
4	.2542	160	2	26.8	85.8		9.8	4.4											
$\overline{5}$.2516	180	2	25.5	88.3		7.1	4.6											
6	.2534	200	2	23.5	84.3		8.1	7.7											
7	. 1018	160	1	14.7	67.2	16.5	7.2	9.1	1.8	Nil	0.025	0.021	All consumed		1.28	0.0764		0.0025	0.0022
																(7.1×10^{-4})		(1.6×10^{-5})	(1.3×10^{-5})
8	. 1020	180	1	14.9	69.7	16.5	5.4	8.3	1.9	Nil	.016	.023	All consumed		0.77	0.0773		0.0017	0.0024
																(7.2×10^{-4})		(1.1×10^{-5})	(1.4×10^{-5})
9	.1018	200	1	14.3	65.8	21.9	4.9	7.4	1.9	Nil	.010	.014	All consumed		.74	0.0761?		0.0009	0.0015
																(7.1×10^{-4})		(6.4×10^{-6})	(8.6×10^{-6})
10	.1016	220	1	15.2	64.9	24.7	3.5	6.9	1.9	Nil	.007	.012	All consumed		.66	0.0783		0.0007	0.0012
																(7.2×10^{-4})		(4.8×10^{-6})	(7.3×10^{-6})
11	.1016	240	1	15.3	65.4	26.3	1.8	6.5	2.0	N:1	.005	.011	All consumed		.48	0.0799		0.0005	0.0011
																(7.4×10^{-4})		(3.2×10^{-6})	(6.7×10^{-6})
12	.1036	480	1	16.1	69.4	23.4	3.9	3.3	2.0	Nil		.016	All consumed			0.0799		Nil	0.0017
																(7.4×10^{-4})			(1.0×10^{-5})
13	.1504	160	1	17.9	74.2	15.6	7.0	3.1	1.8	0.06	.007	.011	0.1473	0.33	.73	0.1054	0.0094	0.0011	0.0016
													(5.3×10^{-4})			(9.8×10^{-4})	(3.9×10^{-5})	(7.0×10^{-6})	(9.6×10^{-6})
14	.1836	160	1	23.5	78.3	13.4	5.7	2.6	1.7	.06	.007	.010	0.1750	.035	.77	0.1251	0.0107	0.0012	0.0017
													(6.3×10^{-4})			$(1.2 imes 10^{-3})$	(4.6×10^{-5})	(7.7×10^{-6})	(1.0×10^{-5})
15	.2445	160	1	32.0	78.8	12.6	4.4	4.1	1.7	.05	.006	.009	0.2307	.03	.73?	0.1784	0.0115	0.0014	0.0021
													(8.4×10^{-4})			(1.6×10^{-3})	(4.9×10^{-5})	(9.0×10^{-6})	(1.2×10^{-5})
16	.3018	160	1	41.3	78.6	10.8	5.3	5.2	1.9	.04	.005	.007	0.2845	.02	.80	0.2095	0.0119	0.0015	0.0021
													(1.0×10^{-3})			(1.9×10^{-3})	(5.1×10^{-5})	(1.0×10^{-5})	(1.2×10^{-5})
17	.3498	160	1	47.7	78.3	12.2	4.9	4.6	1.9	.04	.005	.007	0.3308	.02	. 82	0.2429	0.0146	0.0016	0.0022
													(1.2×10^{-3})			(2.2×10^{-3})	(6.3×10^{-5})	(1.1×10^{-5})	(1.3×10^{-5})
18	.3996	160	1	55.2	78.2	13.0	4.4	4.4	1.9	.04	.005	.006	0.3772	.02	. 81	0.2765	0.0173	0.0018	0.0024
													(1.4×10^{-3})			(2.6×10^{-3})	(7.5×10^{-5})	(1.2×10^{-5})	(1.4×10^{-5})
19	.1801	160	0.25	1.4	50.0	<i>43.4</i>	6.6	Nil	1.3	.28			0.0187	.23	••	0.0097	0.0053	Test only	Test only
													(6.8×10^{-5})			(9.0×10^{-5})	(2.3×10^{-5})		
20	.1868	160	0.5	11.3	76.9	15.2	2.4	5.4	1.8	. 09		.005	0.0875	.08		0.0612	0.0075	Test only	0.0004
													(3.2×10^{-4})			(5.7×10^{-4})	(3.2×10^{-5})		(2.5×10^{-6})
21	. 1867	160	0.75	13.3	71.8	19.0	4.6	4.6	1.8	, 10	.008	.009	0.0967	.06	. 99	0.0661	0.0093	0.0007	0.0008
													(3.5×10^{-4})			(6.1×10^{-4})	(4.0×10^{-5})	(4.8×10^{-6})	(4.9×10^{-6})
22	.1836	16 0	1	23.5	78.3	13.4	5.7	2.6	1.8	.06	.006	.010	0.1750	.04	. 70	0.1251	0.0108	0.0011	0.0017
													(6.3×10^{-4})			(1.2×10^{-3})	(4.6×10^{-5})	(7.0×10^{-6})	(1.0×10^{-5})
23	.1843	160	1.25	27.7	77.8	13.5	5.1	3.6	1.8	.09	.007	.015	0.1765	.04	. 53	0.1261	0.0103	0.0013	0.0026
a :									_				(6.4×10^{-4})			(1.2×10^{-3})	(4.4×10^{-5})	(8.2×10^{-5})	(1.5×10^{-5})
24	.1871	160	1.5	31.2	77.7	13.8	5.1	3.4	1.8	.05	.014	.039	0.1803	.03	.41	0.1272	0.0389	0.0026	0.0070
													(6.5×10^{-4})			(1.2×10^{-3})	(3.8×10^{-5})	(1.7×10^{-5})	(4.1×10^{-5})

^{*a*} Numbers in parentheses give g. atoms or g. moles.

TABLE I

EFFECTS OF TEMPERATURE, MASS AND TIME ON THE DECOMPOSITION OF SILVER HYPONITRITE"

|--|

The Composition of Gas and Solid Products Formed at Various Stages in the Decomposition of $Ag_2N_2O_2(0.3 \text{ g}.)$ at 160°

100 -

1 Expt.	2 Stage	3 Ag2N2O2	<u> </u>	Gas e	volved, ^a	m1.	
no.	no.	consumed	Tota l	NO	NO_2	N_2O	N_2
25	1	0.0748	7.2	4.9	1.6	0.36	0.36
				(68)	(22)	(5)	(5)
26	2	.0502	7.8	5.7	1.2	0.47	0.47
				(73)	(15)	(6)	(6)
27	3	.0561	8.5	6.75	0.95	0.46	0.36
				(79)	(11)	(5)	(5)
28	4	.0845	12.4	9.9	1.9	0.27	0.27
				(80)	(15)	(2.5)	(2.5)
29	5	.0372	7.9	5.0	1.6	0.7	0.65
				(63)	(20)	(9)	(8)

^a Values in parentheses are percentages of gas evolved.

temperature; the latter disappears at 480° while AgNO₃ increases from 160 to 180°, falls off and then increases again at 480°; the ratio AgNO₂/AgNO₃ decreases with increasing temperature; (c) the volume of gas steadily increases (cf. expts. 1–6) with rising temperature; (d) there is little change in the proportion of nitric oxide, but the proportion of nitrogen dioxide increases above 180°, while that of nitrous oxide and nitrogen diminishes with rising temperature (up to 240° for nitrous oxide). Experiments 13–18 show the effect of the mass of salt de-

Experiments 13–18 show the effect of the mass of salt dccomposed. (a) Both Ag₂O and hyponitrite are present in the residue, the amount of Ag₂O increasing with the increasing mass of hyponitrite; per unit Ag₂N₂O₂ consumed Ag is fairly constant, but Ag₂O is not and Ag₂O/Ag diminishes with increasing mass. (b) AgNO₂/AgNO₃ tends to increase. (c) The percentage of nitrogen and nitrous oxide are, as before, low.

Experiments 19–24 show the effect of heating time. (a) In the 15 minute experiment (19) nitrogen is absent; this indicates that it is not a product of the primary change. The proportion of nitrous oxide is highest in this experiment. (b) Nitrate appears earlier than nitrite. (c) Ag₂O increases up to 1 hour and then diminishes, but Ag, AgNO₂ and AgNO₃ increase with time. (d) The proportion of nitric oxide is the lowest and that of nitrogen dioxide the highest at the start. (e) Per unit hyponitrite consumed, Ag₂O produced is very high in 15 minutes (*cf.* N₂O), falls rapidly in the next 15 minutes, and remains low from then on. (f) As Ag₃O/Ag is very high in expt. 19, as compared with expts. 20–24, Ag₂O is probably formed first and Ag produced from it afterwards. (g) The amounts of AgNO₃ and AgNO₂/ AgNO₃ show that the formation of nitrate increases with time. The results of expt. 19 have been reproduced. A $x N_{O} O (0.2 \pi)$ was heated at 100° unit the decomptoria

Ag₂N₂O₂ (0.3 g.) was heated at 160° until the decomposition, as seen by the release of gas, ceased; the pump was kept working and the gas collected as formed in five consecutive lots. The proportion of N₂O was highest in the first lot. The residue contained some nitrite even though decomposition had ceased. Table II contains the results of five experiments on heating Ag₂N₂O₂ in this way; the decomposition was allowed to proceed to a different extent in each experiment. The quantities given for a stage are the differences between the amount at that stage and the amount found in the preceding stage or stages.

On the basis of the amount found and the amount produced per unit Ag_2O_3 constanted, Ag_2O is high and Ag_NO_2 and Ag_NO_3 are low in the first stage. In the second stage Ag_2O falls off markedly while Ag_NO_3 and Ag_NO_2 increase. This indicates that Ag_2O is formed initially and the latter substances are formed later on. If the relatively low percentage of nitrous oxide in the first stage is attributed to its adsorption on the glass walls, ¹⁰ these results suggest that the primary change is $Ag_2N_2O_2 = Ag_2O + N_2O$. The reaction $Ag_2N_2O_2 = 2Ag + 2NO$ is probably not a primary change, since $Ag_2O/Ag_3N_2O_2$ and Ag_2O/Ag are both high in the initial stage; the presence of considerable Ag early in the decomposition does not necessarily indicate that this reaction occurs since Ag is more stable than Ag_2O . In the second stage the nitrite, which has been formed at the expense of Ag_2O , may be a product of the reaction of (a) Ag_2O with $Ag_2N_2O_2$ or (b) Ag_2O with NO (and/or NO₂). That more nitrate than nitrite appears in the first stage does not mean that the

(10) D. H. Bengham and F. P. Burt, J. Phys. Chem., 24, 540 (1925).

						6	
Ag	Solid pr Ag2O	ō oducts, g. AgNO2	AgNO	per u Ag	olid prod nit Ag2N Ag2O	ucts form 2O2 consu AgNO2	1cd 1med, g. AgNO3
0.0501	0.0 07 0	Test	0.00037	(1.67	0.09	Trace only	0.005
.0368	. 00001	,00104	.00084	. 74	.0002	0.02	. 017
.0416	.00075	.00024	.00118	. 74	.013	.004	. 021
. 0655	.0029	.00015	0018	.77	034	0018	021
.0413	None (all used	.0012 up)	0034	1-1	Nil	032	092

former is produced earlier in the decomposition, since under the experimental conditions $AgNO_3$ is more stable than $AgNO_2$ which reacts to give $AgNO_3$ and the oxides of nitrogen.¹¹

In the third stage the amount of nitrite decreases with an increase in nitrate. In the fourth stage, the amount of gas evolved is proportional to the large amount of hyponitrite consumed, but the percentage of N_2O is relatively low; the amounts of Ag_2O and $AgNO_3$ and the proportion of NO and NO_2 become greater. In the last stage $Ag_2N_2O_2$ and Ag_2O disappear, NO falls, NO₂ increases and nitrite and nitrate increase considerably.

In the first and fourth stages, the hyponitrite consumed is relatively large, while the proportion of N_2O produced is not; in the fifth stage the hyponitrite consumed is small and the percentage of N_2O is high. Thus, the N_2O produced is not directly related to the hyponitrite consumed and silver hyponitrite is probably consumed in more than one way.

Decomposition of Mixtures of Ag₂O and Ag₂N₂O₂.—Since less nitrous oxide is formed than would be expected from the reaction Ag₂N₂O₂ = Ag₂O + N₂O, some of the hyponitrite is probably oxidized to nitrite and/or nitrate. As Ag₂O is always present when hyponitrite is present, Ag₂N₂O₂ and Ag₂O may react. This hypothesis was tested by decomposing mixtures of Ag₂N₂O₂ and Ag₂O. The results are given in Table III. On the whole the proportion of N₂O is lower than that found in the decomposition of hyponitrite alone. At 150 and 160° more nitrite is formed than nitrate; Ag₂NO₂/Ag₂NO₃ is highest in 15 minutes at 160° and decreases with time; and this ratio falls with rising temperature. This shows that nitrate is produced from the nitrite.

It is surprising that at 150°, at which $AgNO_2$ is unstable, only a trace of nitrate is found although nitrite is present. The presence in the system of the dissociation products of $AgNO_2$ (Ag_2O , NO and NO_2)^{II} probably retards the decomposition of the nitrite.

These results indicate that $Ag_2N_2O_2$ reacts with Ag_2O to produce nitrite and *not* nitrate: $Ag_2N_2O_2 + 2Ag_2O =$ $2AgNO_2 + 4Ag$. The low production of nitrous oxide in the decomposition of $Ag_2N_2O_2$ is therefore due to this reaction. Furthermore, the large amount of silver found can be accounted for in this way and by the decomposition of $AgNO_2$ which is known to produce Ag. The reaction $Ag_2O +$ $NO_2 = AgNO_3 + Ag$ may also contribute to the production of nitrate.¹²

The fact that nitrate is present in larger proportions than nitrite in the initial stage of the decomposition at 160° is another evidence for the absence of the reaction Ag_2N_2 - $O_2 = 2Ag + 2NO$ in the primary stage. If NO were produced in large amounts it would not only have affected the stability of Ag_2O but also reduced the proportion of nitrate by the reaction⁸ $Ag_3NO_3 + NO = Ag_3NO_2 + NO_2$ which we have found¹¹ to be quite prominent at such temperatures. The fact that at a higher temperature a larger percentage of nitrous oxide is produced in one-half hour (expts. 1- θ) also supports the view that nitric oxide is not produced in the primary stage.

primary stage. **Decomposition of Mixtures of** $AgNO_2$ and $Ag_2N_2O_2$.—To determine whether the reaction $Ag_2N_2O_2 = 2Ag + 2NO$ ac-

(11) T. M. Oza, V. T. Oza and R. H. Thaker, J. Chem. Soc., 2457 (1955).

(12) P. Sabatier and J. B. Senderens, Bull. soc. chim., [3] 9, 568 (1892); Compt. rend., 115, 236 (1893); 114, 1429 (1892).

							T	HE DEC	LISO4WO	tion of Mixtur	tes of Ag ₂ N ₂ O ₂	AND Ag ₂ O				
Expt.	2 Ag2N2O2,	3 Ag2O,	1 Temp.,	ă Time,	6 Gas	Col		as in %	ĺ	Ag2N2O1		Solid produ	cts, ^a g.		$\frac{10}{\text{AgNO}_2}$	11 Ag2O_
no.	ьò	ъċ	<u>ن</u>	hr. e	volved, m!.	ON .	őN	N ₂ O	ź	consumed, g.	\mathbf{Ag}	Ag2O	$AgNO_2$	AgNO ₃	AgNO3	consumed, g.
30	0.1012	$0 \ 0274$	150	1	0.52	59.0	50.0	:	:	0.0081	0.0054	0.0257	0.0015	Test ouly	I.arge	0.0017
											(5.0×10^{-5})	(1.1×10^{-4})	(9.9×10^{-6})			
31	. 1000	.0211	160	0.25	1.55	46.5	40.0	6.5	7.0	.0187	0.0126	0.0188	0.0054	0.0011	14	.0023
											(1.2×10^{-4})	(8.1×10^{-5})	(3.5×10^{-3})	(6.3×10^{-6})		
32	.1002	.0212	160	0.5	6.1	76.4	15.4	3.5	4.8	.0298	0.0272	0.0123	0.0068	0.0014	5.5	.0089
											(2.5×10^{-4})	(5.3×10^{-5})	(4.4×10^{-5})	(8.1×10^{-6})		
33	.1000	.0210	160	0.75	10.4	74.1	16.9	4.2	4.8	.0602	0.0504	0.0108	0.0076	0.0019	4.9	.0102
											(4.7×10^{-4})	(4.7×10^{-5})	(4.9×10^{-5})	(9.9×10^{-6})		
34	. 1004	.0206	160		13.7	74.2	17.2	4.0	4.6	.1004	0.0850	0.076	0.0063	0.0028	2.5	.1004
											(7.9×10^{-4})	(3.3×10^{-5})	(4.1×10^{-5})	(1.7×10^{-6})		
35	.1000	.0202	180	1	14.3	72.2	19.0	4.4	4.4	All consumed	0.0890	IIN	0.0059	0.0030	2.1	.018
											(8.2×10^{-4})		(3.8×10^{-5})	(1.8×10^{-5})		
36	.1004	.0200	200	1	14.7	68.1	21.0	4.9	5.9	All consumed	0.0915	Nil	0.0055	0.0035	1.7	All consumed
											$(8.5 imes 10^{-4})$		(3.6×10^{-5})	(2.1×10^{-5})		
37	.1000	.0208	220	1	13.0	52.1	30.6	5.5	11.8	All consumed	0.0923	Nil	0.0028	0.0052	0.6	All consumed
											(8.5×10^{-4})		(1.8×10^{-5})	(3.1×10^{-5})		
38	.1012	.0214	240	-	13.0	51.7	31.0	5.5	11.8	All consumed	0.0923	Nil	0.0027	0.0053	0.5	All consumed
											(8.5×10^{-4})		(1.8×10^{-5})	(3.1×10^{-5})		
39	.1000	.0206	480	1	13.3	51.0	32.1	5.4	11.5	All consumed	0.0939	Nil		0.0055		All consumed
											(8.7×10^{-4})			(3.3×10^{-6})		
a V	alues in 1	oarenthese	es are {	gram at	oms or g	ram mol	les.									

AgNO₄ Nii 0.0010 .0031 .0033 .0015 .0015 .0021 .0052 Solid products, g. AgrO AgNO₂ Nil 0.0256 Nil 0.0256 Nil 0.095 Nil 0.047 0.00945 0036 Nil 0.025 Nil 0.025 Vil 0.025 Vil 0.025 The Decomposition of Mixtures of $\mathrm{Ag_2N_3O_2}$ and $\mathrm{AgNO_3}$ Ag Nil 0.0041 .0097 .134 .0359 $\begin{array}{c} 0780\\ 0810\\ 0840\\ 0840 \end{array}$ $\mathbf{N}_{\mathbf{N}}^{\prime \prime}$ ∞ 4.14.13.9 က် Ē 6.4 5.4 5.1 N²O TABLE IV Ω. Composition NO NO² 33.3 33.3 32.1 5.4 5.4 5.1 66.7 66.7 61.2 67.9 62.1 71.1 20.0 20.0 ⁶ ⁷ Total ⁸ 0.84 0.84 0.84 4.1 4.1 4.8 15.6 15.5 15.5 16.4 - - 4 4 4 emp., $\begin{array}{c} 120 \\ 150 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 100 \\$ 02560050 0050 0100 0.025602443 AgNO₂ dded, g. 0264 $\begin{array}{c} 0.\ 1016\\ .\ 1020\\ .\ 1020\\ .\ 1020\\ .\ 1020\\ .\ 1000\end{array}$ 10001000 1000 2 Ag2N2O2, 8-1 Bxpt. no. 41 41 42 42 43 44 45 45 45 45 47 companies $Ag_2N_2O_2 = Ag_2O + N_2O$ in the primary stage, the decomposition of mixtures of silver hypo-nitrite and silver nitrite was studied (Table IV). $AgNO_2$ decomposes at $128^{\circ 11}$ and $Ag_2N_2O_2$ at 158° ; the decomposition of the nitrite, therefore, would expose the Ag_2O , produced by the decomposition of $Ag_2N_2O_2$, to nitrous gases. Although $AgNO_2$ produces more nitrogen dioxide than nitric oxide, the effect would be noticeable. The hyponitrite re-nuains unchanged up to 150° although nitrite has

decomposed; this indicates that hyponitrite, like

decomposed; this indicates that hyponitrite, like nitrite, is not oxidized by nitrogen dioxide at 150° . The reaction at 160° is very slow; 0.1 g. of Ag₂N₂O₂ which decomposes completely in 1 hour in the ab-sence of added nitrite (expt. 7, Table I), took 4 hours to decompose. The amount of Ag₂O after 1 hour at 160° was 0.0094 g. (expt. 44) as compared with 0.06 g. formed from 0.15 g. of Ag₂N₂O₂ under the same conditions (Table I expt. 13): this shows

the same conditions (Table I, expt. 13); this shows that oxides of nitrogen react with Ag₂O. Therefore, in a system in which nitrous gases are generated, Ag₂O is consumed more effectively to produce nitrite and nitrate. As neither nitrite nor nitrate is present in appreciable amounts at the start of the decom-position (Table I, expt. 19) when Ag_2O and nitrous

⁹ ^{con-} ^{con-} ^{numed, g}. Nii Nii Nii Nii Nii 0.0574 .1000 .1000

Oct. 5, 1955

TABLE III

4979

(1)

gases are present, the reaction $Ag_2N_2O_2 = 2Ag + 2NO$, which would introduce large additionala mounts of nitric oxide in the system, containing Ag₂O, probably docs not occur.

Conclusion

The primary change in the decomposition of silver hyponitrite appears to be

$$Ag_2N_2O_2 = Ag_2O + N_2O \qquad (I)$$

Apparently this reaction is not accompanied by any other change, such as $Ag_2N_2O_2 = 2Ag + 2NO$. Reaction I is instantly followed by

$$Ag_2N_2O_2 + 2Ag_2O = 2AgNO_2 + 4Ag \qquad (II)$$

The formation of $AgNO_2$ in this way, at 160° and above, is followed by its decomposition (above 128°) producing, ultimately, AgNO₃, Ag and oxides of nitrogen. Nitrate is formed from nitrite and not directly; it may be produced, to some extent, by $Ag_2O + NO_2 = AgNO_3 + Ag$. As nitric oxide is formed it reacts with nitrate to regenerate nitrite to some extent, $AgNO_3 + NO \rightleftharpoons AgNO_2 + NO_2$.

The decomposition of silver nitrite, which follows reactions I and II, retards the decomposition of silver hyponitrite by reaction I. The formation of nitrite from the hyponitrite also reduces the amount of hyponitrite decomposing by I and explains low percentage of nitrous oxide in the gas; although I is the primary change, the reaction apparently stops as soon as Ag₂O and AgNO₂ (optimum) are present and starts again when these approach a limiting concentration. Thus, the decomposition of silver hyponitrite seems to proceed by the propelling action of silver oxide formed, at intervals, during the decomposition.

That I is not accompanied by $Ag_2N_2O_2 = 2Ag +$ 2NO is supported by the following observations: (a) nitric oxide destroys Ag_2O rapidly with the formation of nitrogen dioxide, nitrite and nitrate; (b) silver oxide oxidizes silver hyponitrite even at 150° while the oxides of nitrogen do not do so; and (c) when large quantities of silver nitrite are present in the system containing silver hyponitrite, silver oxide is not found.

The formation of nitrogen is not explained. It is found whenever silver oxide is present or produced in contact with nitric oxide or oxides of nitrogen. As nitric oxide and nitrogen dioxide are both present in the system, it is not likely that the reaction⁸ $AgNO_2 + NO = AgNO_3 + 1/_2N_2$ occurs to any appreciable extent.

Thanks are due to Dr. V. T. Oza for help in blowing the systems and for gas analyses. Ahmedabad, India

[CONTRIBUTION FROM THE CHEMICAL INSTITUTE, FACULTY OF SCIENCE, NAGOYA UNIVERSITY]

Measurement of the Amount of Bound Water by Ultrasonic Interferometer

By Hazime Shiio, Toshio Ogawa and Hiroshi Yoshihashi

RECEIVED DECEMBER 13, 1954

A general theory which enables us to evaluate the amount of the bound water of non-electrolyte and of high polymer in solution from ultrasonic velocity measurements has been introduced, and applied for glucose, maltose and dextrin solutions. The ultrasonic velocity was measured by an interferometer making use of X-cut crystal of resonance frequency 1 mc. The nieasurements were made at 20.0°. The amount of bound water was found to be 0.43, 0.23, 0.40 cc./g. of glucose, maltose and dextrin, respectively.

Introduction

It is a well-known fact that, in solutions of electrolytes, the water molecules bound to an electrolyte ion are compressed owing to the strong electric field of the ion to form a very hard structure. Passinski,1 Wada2 and Sasaki3 evaluated the degree of hydration of ions from adiabatic compressibility measurements. They assumed the compressibility of bound water and of the ion itself to be both negligibly small. But the applicability of this method for the evaluation of non-electrolytes or high polyiners in aqueous solutions is questionable, the bound water of non-electrolytes or the molecules of high polymers being reasonably supposed to be of appreciable compressibility. We have deduced a more general formula taking account of the compressibilities of bound water and of the solute particle, and have applied it to the solutions of sugars as well as high polymers and estimated the amount of bound water.

Theoretical

If M grams of solute is dissolved in V'_0 cc. of sol-

(1) A. Passinski, Acta Physicochimi, U.R.S.S., 8, 385 (1938).

(2) Y. Wada, Applied Phys. (Japan), 17, 257 (19481.
(3) T. Yasunaga and T. Sasaki, J. Chem. Soc. Japan. Pure Chem Soc., 72, 366 (1951).

vent, some of the solvent, say v_0' cc., will be attached to the solute and compressed to be v_2' cc., and, consequently, there will result a solution of volume V'cc. Accordingly it follows that

 $V' = V'_0 + V'_1 + v'_2 - v'_0$

in which

$$V'_1 = M/d_1$$
 = volume of solute in V' ce. solu

 d_1 = true density of solute in soln. (solvation effect being not taken into account)

Differentiating (1) with respect to the pressure, P

$$\frac{\mathrm{d}V'}{\mathrm{d}P} = \frac{\mathrm{d}V'_0}{\mathrm{d}P} + \frac{\mathrm{d}V'_1}{\mathrm{d}P} + \frac{\mathrm{d}v'_2}{\mathrm{d}P} - \frac{\mathrm{d}v'_0}{\mathrm{d}P}$$

Let β , β_0 , β_1 and β_2 represent the adiabatic compressibility of solution, solvent, solute and bound water, respectively.

From definition these β 's are given by

$$\beta = -\frac{1}{V}\frac{\mathrm{d}V}{\mathrm{d}P}$$

therefore we obtain the relation

$$V'\beta = V'_{0}\beta_{0} + V'_{1}\beta_{1} + v'_{2}\beta_{2} - v'_{2}\beta_{3}$$

For 1 ec. solution, this can be written in the form

$$\beta = V_0 \beta_0 + V_1 \beta_1 + v_2 \beta_2 - v_0 \beta_n$$
 (2)